TLinePrinter Version 1.0c

�

� SAVEDATE \@ "M/d/yy" * MERGEFORMAT �3/5/97� — Bill Menees

Copyright © 1996-1997

Overview

	TLinePrinter is a non-visual VCL component for 32-bit Delphi that encapsulates the TPrinter object. It requires three files: LinePrnt.Dcu, LinePrnt.Res, and PrntProg.Dfm. When installed it is placed on the System page of the component palette with the icon displayed above. It installs to the System page because printing is a system task, and it is such an important part of almost every Windows application. I think TLinePrinter is one of those components that Delphi should have included right out of the box.

	TLinePrinter allows you to set margins, font, borders, header, footer, title, alignment, word-wrap, and even the lines to print at design time. It can even print tables. TLinePrinter is a very good middle ground between doing the simple writeln based printing and doing the full rendering on the printer canvas. It gives you the ease of use of the simple printing (e.g. TLinePrinter.WriteLine(string)), but it also gives you some of the power of the canvas rendering by encapsulating complex details such as margins, borders, alignment, and word-wrap for you.

	Please test this component out and let me know what you think. I'm open to any suggestions, especially bug fixes. You can e-mail me at bmenees@usit.net, and you can download the latest version of TLinePrinter (and some of my other fabulous programs… :-) at my web page: http://www.public.usit.net/bmenees.

	TLinePrinter is freeware, and it includes it's source code. It is not public domain software because I (the author) retain all rights to it. However, please feel free to distribute it far and wide in it's unmodified, shipping form. However, before you distribute it please take the time to get the latest version of it from my web page. Any time I fix a bug or add a feature, it will be posted to my web page first.

	TLinePrinter may need a real help file. I just don't have the tools to do it the easy way (e.g. RoboHelp), and I don't have the time to do it the hard way (as an RTF). I wrote TLinePrinter so I could get my projects done fast and easy. I tried to make it really easy to use, so anyone can pick it up and start working with it after just seeing some example code. If I've failed in this objective let me know. My point is that after you use it once, I don't think you'll need a help file.

	After the example code in the next section, the rest of this document is pretty much just a formatted print out of the Interface section of LinePrnt.Pas followed by some notes at the end. It shows the various member functions and properties defined for TLinePrinter as well as all consts, types, and non-member functions defined in the unit.

Example

	The following example shows how easy it is to get quality printed output with TLinePrinter. This will print a page with 1 inch margins, a top and bottom border, a header that displays the title and page number, and a footer that displays the date and time of printing. The code presented here is really longer than it needs to be because much of this example can be done at design time. It's just written out here, so you can get a feel for how TLinePrinter works.

//Set up some basic properties.

//These can also be set at design time.

LinePrinter.Lines:=Memo.Lines;

LinePrinter.Font:=Memo.Font;

LinePrinter.PageBorders:=[pbTop, pbBottom];

LinePrinter.MeasureUnit:=muInches;

LinePrinter.MarginTop:=1;

LinePrinter.MarginBottom:=1;

LinePrinter.MarginLeft:=1;

LinePrinter.MarginRight:=1;

//Now set up the header and footer.

//This can be done at design time too.

LinePrinter.HeaderFormat:='<5|>1.5'; //5" left align col; 1.5" right align col

LinePrinter.Header:='{$TITLE}|Page {$PAGE}';

LinePrinter.FooterFormat:='<5|>1.5'; //5" left align col; 1.5" right align col

LinePrinter.Footer:='{$DATE}|{$TIME}';

//Now do the actual printing.

LinePrinter.BeginDoc;

LinePrinter.PrintLines;

//Demonstrates the line printing functions.

LinePrinter.WriteLine('This will be left justified.');

LinePrinter.WriteLineCenter('This will be in the center.');

LinePrinter.WriteLineRight('This will be right justified.');

//Print a table with three 2" columns.

//Left, Center, and Right aligned respectively.

LinePrinter.TableFormat:='<2|^2|>2';

LinePrinter.Font.Style:=LinePrinter.Font.Style+[fsBold];

LinePrinter.WriteTableLine('At Left|In Middle|At Right');

LinePrinter.WriteTableLine('1|2|3');

LinePrinter.EndDoc;

Constants

LinePrinterWhiteSpaceChars = [#0..#32];

TokenSeparator = '|';

{In Pixels}

DefaultDPI = 300;

DefaultBorderWidth = 2;

{In Inches}

DefaultPhysicalPageHeightIn = 11.0;

DefaultPhysicalPageWidthIn = 8.5;

DefaultAvailablePageHeightIn = 10.5;

DefaultPageWidthIn = 8.0;

DefaultGutterLeftIn = 0.25;

DefaultGutterTopIn = 0.25;

{In Millimeters}

DefaultPhysicalPageHeightMm = 297.0;

DefaultPhysicalPageWidthMm = 210.0;

DefaultAvailablePageHeightMm = 284.0;

DefaultAvailablePageWidthMm = 198.0;

DefaultGutterLeftMm = 6.0;

DefaultGutterTopMm = 6.0;

{These are expanded only in Headers, Footers, and Tables.}

LineField = '{$LINE}';

PageField = '{$PAGE}';

DateField = '{$DATE}';

TimeField = '{$TIME}';

TitleField = '{$TITLE}';

Types

ELinePrinter = class(EPrinter);

{These are declared so you can tell at a glance what a property or function's return value is used for.}

TMeasurement = Single;

TPixels = Cardinal;

TMeasureUnit = (muInches, muMillimeters);

TLineSpacing = (lsHalfSpace, lsSingleSpace, lsSingleAndAHalf, lsDoubleSpace);

TPageBorderStyle = (pbTop, pbBottom, pbLeft, pbRight);

TPageBorders = set of TPageBorderStyle;

TPrntProgDlg = class(TForm)

TLinePrinter = class(TComponent)

Protected Members

procedure DoNewPageProcessing;

function ExpandLogicalFields(S: String): String;

function GetClippedLine(const Line: String; const Width: TPixels): String;

function MeasureUnitsToPixelsH(const M: TMeasurement): TPixels;

function MeasureUnitsToPixelsV(const M: TMeasurement): TPixels;

function PixelsToMeasureUnitsH(const P: TPixels): TMeasurement;

function PixelsToMeasureUnitsV(const P: TPixels): TMeasurement;

procedure SetPixelsPerInch;

procedure SplitLineAndPrint(const Line: String);

procedure UpdateProgressDlg(const Status: String);

Public Members

//This property is read/write.

property Canvas: TCanvas;

//All of these properties are read-only.

property Aborted: Boolean;

property GutterTop: TMeasurement;

property GutterBottom: TMeasurement;

property GutterLeft: TMeasurement;

property GutterRight: TMeasurement;

property LineNumber: Cardinal;

property AvailablePageHeight: TMeasurement;

property AvailablePageWidth: TMeasurement;

property PageNumber: Cardinal;

property PhysicalPageHeight: TMeasurement;

property PhysicalPageWidth: TMeasurement;

property PrintableHeight: TMeasurement;

property PrintableWidth: TMeasurement;

property Printing: Boolean;

constructor Create(Owner: TComponent); override;

destructor Destroy; override;

procedure AbortDoc;

procedure BeginDoc;

procedure EndDoc;

function NewLine: Cardinal;

function NewPage: Cardinal;

procedure PrintLines;

procedure Refresh;

procedure WriteLine(const Line: String);

procedure WriteLineCenter(const Line: String);

procedure WriteLineRight(const Line: String);

procedure WriteTableLine(const Line: String);

Published Properties

//All of these properties are writable, of course.

property Alignment: TAlignment default taLeftJustify;

property BorderOffset: TMeasurement;

property DefaultColWidth: TMeasurement;

property FileName: String;

property Font: TFont;

property Footer: String;

property FooterFormat: String;

property Header: String;

property HeaderFormat: String;

property Lines: TStrings;

property LinesAsTable: Boolean default False;

property LineSpacing: TLineSpacing default lsSingleSpace;

property MarginTop: TMeasurement;

property MarginBottom: TMeasurement;

property MarginLeft: TMeasurement;

property MarginRight: TMeasurement;

property MeasureUnit: TMeasureUnit default muInches;

property Orientation: default poPortrait;

property PageBorders: TPageBorders default [];

property PrintToFile: Boolean default False;

property ShowProgress: Boolean default False;

property TableFormat: String;

property Title: String;

property TabSize: Cardinal default 8;

property WordWrap: Boolean default True;

Published Events

property OnAbortDoc: TNotifyEvent;

property OnBeginDoc: TNotifyEvent;

property OnEndDoc: TNotifyEvent;

property OnNewLine: TNotifyEvent;

property OnNewPage: TNotifyEvent;

Miscellaneous Routines

function ExpandTabsAsSpaces(const S: String; const TabSize: Integer): String;

procedure ParseFormatToken(var CurToken: String; var CurAlignment: TAlignment; var CurWidth: TMeasurement; const DefaultColWidth: TMeasurement);

function ReplaceSubString(OldSubStr, NewSubStr, S: String): String;

function StripBackToWhiteSpace(const S: String): String;

procedure TokenizeString(const S: String; Tokens: TStringList);

procedure GenSpace(const Size: Integer): String;

Other Included Files

{$R LinePrnt.Res}

{$R PrntProg.dfm}

Notes

1. 	Almost every property is measured in MeasureUnits (inches or millimeters). TabSize is the only exception; it is measured in spaces.

2. 	If you have no default printer, you will get warnings at design time. You may still be able to work with it, but I haven't really tested it. I've tried to make sure things are handled gracefully at run time if you have no printers installed, but I intentionally warn you at design time if you try to modify any properties that directly modify the underlying TPrinter object (e.g. Font, Orientation, Title). TPrinter depends on there being at least one printer.

3. 	If you try to set the margins too small, they get set to the corresponding gutter size. If you try to set the margins too large, they get set to the physical page size (height or width) minus the corresponding gutter size. Originally, I was going to raise a TLinePrinter exception, but that proved bad because exceptions could be fired while the component was being loaded (before you could trap them in code). To get around this, I had to just quietly set them to appropriate values.

4. 	If you increase the page size and set the margins then decrease the page size, the margins may be out of bounds. This is the reason for the Refresh method, it makes sure they are within bounds. Thus, you should always call the TLinePrinter.Refresh method after you display a printer setup dialog, change any printer characteristics through API calls, etc.

5.	Long strings are explicitly turned on (and used) in this unit. I've never tested TLinePrinter in a program where long strings were turned off, so I'm not sure what will happen if you try.

6.	Headers, footers, and tables and tables are affected by the HeaderFormat, FooterFormat, and TableFormat properties respectively. They controls the number of columns to print and alignment in the columns. The general syntax for the format properties is:

<Alignment><Width>[|<Alignment><Width>…]

<Alignment> is a single character for each column. It can be '<', '^', or '>' to determine left, center, and right alignment in a column. <Width> determines the columns width in MeasureUnits. You can have as many columns as you like, but no checking is done to ensure that the columns don't run off the right edge of the page. I leave that up to the programmer. Tables respect MarginTop, MarginBottom, and MarginLeft; they ignore MarginRight.

Modification History

8/8/96	Work Began.

9/26/96	Initial Release.

10/2/96	Released Version 1.0a.

	Incorporated suggestions from:	Göran Pettersson (E-Mail: g.pettersson@udt.se)

1.	Added new property MeasureUnit, for selection between Inches and Millimeters.

2.	Added english and metric constants for default PageHeight, PageWidth, PhysicalPageHeight, PhysicalPageWidth, GutterLeft, and GutterTop.

10/31/96	Released Version 1.0b

	Incorporated some changes I thought would be helpful.

1. 	PrintableWidth and PrintableHeight properties were added. They give the printable area bounded by the margins.

2. 	The former PageHeight and PageWidth properties were renamed to AvailablePageHeight and AvailablePageWidth.

3. 	There is now a public Canvas property! So if you need to do a little drawing of your own, you can.

4. 	OnNewPage used to fire before the new page was created. This wasn't very useful. Now OnNewPage fires after the new page is created.

5.	HeaderFormat and FooterFormat are now used to format the Header and Footer instead of TableFormat.

6. 	The LinesAsTable property has been removed. Now PrintLines takes this as a parameter. This makes more sense. (LinesAsTable was only needed as a property in an early alpha version of TLinePrinter where the Lines were printed automatically in BeginDoc.)

There is now a PrevLine function so you can print multiple times on the same line if you need to. It returns a Boolean value to indicate its success. It only fails at the top of a page.

3/5/97	Released Version 1.0c

1.	Added the ability to (partially) print to a file. It's not a perfect translation: It completely ignores margins, and it places the footer right after the header. But it's still useful enough that I thought I would include it.

