SharpScript – Scripting for .NET
Copyright © 2004-2016 – Bill Menees – Bill@Menees.com
http://www.menees.com/

[bookmark: About]About SharpScript
SharpScript provides .NET scripting using C# and VB.NET. Its functionality is similar to what WScript provides for COM scripting, but SharpScript lets you use .NET, so it’s significantly more powerful, type-safe, and object-oriented than previous scripting choices.

SharpScript includes a GUI version (SharpScript.exe) and a console version (SharpScriptConsole.exe). The GUI version provides a tray icon that allows you to monitor or cancel a script’s execution. Both versions allow you to run debug versions of your scripts so you can attach to them with a debugger if necessary. The GUI version even provides menu items on the tray icon to make it easy to attach a debugger or break in the debugger.

SharpScript is written in C# and requires at least the .NET 4.5 Framework.
Registration
SharpScript isn’t freeware. It is CharityWare. I don’t want to receive any money for it, but if you use it regularly, I’d like for you to make at least a $5 (US) donation to some worthwhile charity.

I’ll never know if you don’t follow this “registration” policy, but the negative karma from illegally using this software will be far worse than giving $5 to help someone else out. And if you do follow this policy, the good karma you accumulate will be much better than anything else you could get for $5.

By “worthwhile charity” I mean a charity that helps other people, animals, or life in general. This can be your church, your local pet shelter, a save-the-planet foundation, etc. Anything that applies compassion and loving-kindness with wisdom toward the benefit of other beings and life will do fine.

There are opportunities to do this all around you. In addition to the big-name charities and organizations (e.g. United Way, Salvation Army, Greenpeace, etc.), at almost every convenience store, fast food restaurant, etc. there are donation baskets for some good cause.

Please don’t forget about this or blow it off because there are no nag screens. I wrote SharpScript to help everyone out, and all I ask is that you return the favor by helping someone else out. Thanks!
[bookmark: _Hlt516507028]SharpScript File Types
Running ShellSetup.bat executes ShellSetup.scs, which registers support for C# and VB.NET SharpScripts in Windows Explorer:
· .scs – C# script
· .svb – Visual Basic.NET script

Both of these file types have right-click menu options in Windows Explorer to:
· Run – Execute the script in “release” mode
· Run Debug – Execute the script in “debug” mode
· Edit with VS 201x – Open the script in Visual Studio 2015, 2013, 2012, or 2010 (only in the highest version installed).

If you have Visual Studio 201x installed, then .scs and .svb SharpScript files will display with correct syntax highlighting when they’re opened in VS.

Note: If any instances of VS were running when you ran ShellSetup.bat, you may need to restart them for the syntax highlighting support to take effect.
Coding
Writing a SharpScript is pretty much like writing a standard .NET application except you don’t need project files or anything fancy to compile and run them. See the Scripts directory underneath the base SharpScript folderfor some “Hello, World” samples in several languages. Here’s a C# version:

using SharpScript;

class Test
{
	public static void Main(string[] args)
	{
		Script.Echo("Hello, World, from C#.");
	}
}

Referencing Assemblies with #reference and #com_reference
SharpScripts running in SharpScriptConsole.exe reference the following assemblies by default:
· Mscorlib.dll
· System.dll
· System.Core.dll
· System.Data.dll
· System.Data.DataSetExtensions.dll
· System.Xml.dll
· System.Xml.Linq.dll
· SharpScript.Common.dll
· Microsoft.CSharp.dll (for C# scripts)

SharpScripts running in SharpScript.exe (the GUI version) reference all of the above assemblies plus:
· System.Drawing.dll
· System.Windows.Forms.dll
· System.Deployment.dll
· PresentationCore.dll
· PresentationFramework.dll
· WindowsBase.dll

To reference other assemblies you need to include a special #reference directive in a single-line comment within your script. The syntax for #reference is:

	single_line_comment_delimiter #reference "assemblyname"

The assembly name can be a file name, a relative path, or a fully-qualified path. It can also contain environment variables, which will be expanded at compile-time. An example usage in C# would be:

//#reference "System.Design.dll"

An example usage in VB.NET would be:

'#reference "System.Design.dll"

Both of these examples cause the generated script assembly to have a reference to the System.Design.dll. Then any of the types defined within System.Design.dll can be used in the script.

SharpScript also supports a #com_reference directive that lets you refer to COM type libraries. You can refer to type libraries in DLLs, TLBs, OLBs, or any other type of file supported by Windows’s LoadTypeLibEx function. The referenced type library will automatically be wrapped by an Interop assembly. The syntax for #com_reference is:

	single_line_comment_delimiter #com_reference "TypeLibName[,Namespace]"

The namespace to use in the generated Interop assembly can be specified in the #com_reference directive. If the namespace isn’t specified, then it will default to the type library name minus any extension. Some example usages in C# would be:

//#com_reference "ScrRun.dll, WScript"
//#com_reference "Msxml4.dll"

Note: Script directives must be placed at the top of the script file in single-line comments. SharpScript will stop looking for directives when it encounters the first non-empty, non-whitespace, non-directive, non-single-line-comment line in the file.

Other Script Directives
SharpScript supports some additional script directives using the standard directive syntax:

	single_line_comment_delimiter #directiveName directiveValue

	Name
	Value
	Description

	debug
	None
	Forces the script to be compiled in debug mode even if the //D command-line option isn’t used. C# example:
//#debug

	r
	Assembly name
	Shorthand notation for #reference. C# example:
//#r "System.Design.dll"

	com
	Type library name
	Shorthand notation for #com_reference. C# example:
//#com "ScrRun.dll, WScript"

	compiler
	CodeDom or Roslyn
	Forces SharpScript to use the specified compiler. If a #compiler directive isn’t specified, then CodeDom is the default (because the Roslyn compiler is much slower at emitting assemblies). C# example:
// #compiler Roslyn

Strict Compiler Options
SharpScript compiles scripts with the strictest possible options enabled for each compiler type. This includes warning level 4, treat warnings as errors, option explicit, option strict, etc. In debug builds it also turns on integer checking. I use this level of strictness because it’s what I prefer in my “real” development projects. I’ve found that strictness leads to better programs and looseness leads to sloppy programs.

If you want looseness, you should probably stick with a WScript-compatible language. Or if you’re a glutten for punishment you could use a VB.NET SharpScript and turn Option Explict off and Option Strict off in your script file.
Script Class API
SharpScript provides a static Script class that exposes several useful properties and methods. The Script class lets you communicate with the user, check whether you’re running in the console and/or in debug mode, get the script filename and arguments, etc. The Script class is similar to the “WScript” global named object that is available to COM scripts running in the WScript or CScript processors.
Properties
public static bool Debug
Gets whether the script is running in “debug” mode.

public static bool InConsole
Gets whether the script is running in a command console.

public static bool IsExecuting
Gets whether the script is currently executing. This is always true when SharpScript.exe or SharpScriptConsole.exe runs your script. However, if you reference the SharpScript.Common.dll assembly from other programs and try to use the Script class, then this property will return false. If this returns false, then all of the other properties and methods on the Script object will throw an InvalidOperationException if you try to use them.

public static DateTime StartTime
Gets the date and time the script was started.

public static string FileName
Gets the full name and path to the script file.

public static string Name
Gets the name of the script minus the path and extension.

public static TimeSpan Timeout
Gets the maximum time that the script can run before it is automatically cancelled. This defaults to zero, which means no timeout. This property can only be set by the command-line switch //T.

public static bool Quiet
Gets whether the script is running in “quiet” mode. The GUI version will not show a system tray icon if this is true. This does not effect MsgBox, InputBox, or Echo calls.

public static string SharpScriptDirectory
Gets the full path to the folder containing SharpScript.exe and SharpScriptConsole.exe.

Methods
public static DialogResult MsgBox(string strPrompt [,MessageBoxButtons eButtons [,MessageBoxIcon eIcon [,string strCaption]]])
Displays a message box using the specified options. The last three parameters are optional.

This method defaults the caption to the Script.Name property. This makes it the best method for simple message boxes because MessageBox.Show and VB’s MsgBox method default the caption to the “application name”, which in a release mode SharpScript is a randomly generated name (e.g., “pxvjqx5n”).

public static string InputBox(string strPrompt [,string strCaption [,string strDefault]])
Displays a dialog that lets the user enter a single line of text. The last two parameters are optional.

This does the same thing as VB’s InputBox method. If the user presses Cancel on the dialog, then an empty string is returned.

public static string[] GetArguments()
Gets the command-line arguments that were passed into the script. This array does not include the script file name or any double-backslash parameters because those were processed by SharpScript.

public static void Cancel()
Cancels execution of the script.

public static void Echo(params object[] arValues)
In SharpScript.exe (the GUI version), this displays a message box with each value separated by a newline. In SharpScriptConsole.exe (the console version), this displays each value in the console window separated by a newline.

public static void Sleep(int iMilliSeconds)
Pauses script execution for the specified number of milliseconds.
Debugging
SharpScript supports running scripts in debug mode. If a script is launched with with //D command-line switch, then debug information will be generated for it. Then Visual Studio or the CLR Debugger can be used to debug your script.

You can easily launch a script in debug mode from Windows Explorer by right-clicking a SharpScript file and selecting “Run Debug”. That will run the script in debug mode, and the tray icon menu will contain items that allow you to easily attach a debugger or break in the debugger.
Command Line Switches
SharpScript.exe and SharpScriptConsole.exe support command line switches. The switches are the same for both programs.

Note: The command-line switches for SharpScript and SharpScriptConsole must begin with double backslashes. Any switches that begin with a single backslash are passed on to the script as script arguments.

Usage:	SharpScript ScriptFileName [Options...] [ScriptArgs...]

Options:	//D		Generate debug information for the script.
//Q		Quiet mode. The GUI version won't show a system tray icon.
//T:nn	Time out in seconds: Maximum time a script is permitted to run.

Any other command line switches that begin with double backslashes (e.g. //?) will cause a help message to display that lists the valid command line switches.
[bookmark: RevisionHistory]Revision History

	Version
	Date
	Description

	5.0.5
	1/4/16
	· [bookmark: _GoBack]Updated to the Roslyn v1.1 compilers.

	5.0.4
	9/13/15
	· Added support for the #compiler directive to allow older scripts to still use the CodeDom, which compiles and executes faster.

	5.0.3
	9/7/15
	· Used DesktopAssemblyIdentityComparer to handle multiple mscorlib version references correctly (e.g., 4.0 and 2.0).

	5.0.2
	8/3/15
	· Updated to process the source text a little more efficiently.

	5.0.1
	8/1/15
	· Added 48x48 icons.

	5.0
	7/28/15
	· New version using the Roslyn compilers for C# 6 and VB 14.
· Added support for VS 2015.

	0.0 – 4.5.5
	7/28/04 – 9/28/13
	· Prior versions that used .NET’s CodeDomProvider to do script compilation.

[bookmark: LicenseAgreement]License Agreement
What follows is a lot of legalese that I feel is unfortunately necessary to protect myself in this litigious age. In practice I’m not as legally anal as this might make me seem. My goal is to help people out with this utility, not to keep lawyers and courts tied up.

This agreement states my legal intentions, and you must accept it before using the software. However, if you have a need to use the software in a manner that is not in compliance with this agreement, please feel free to ask for my permission. I’m very willing to relax these restrictions for a good cause, but you’ll need to get my permission in writing before using the product or anything covered by this agreement in any manner that doesn’t comply with this agreement.
Copyright
All title, copyrights, and intellectual property rights in and to SharpScript as well as the accompanying documentation, source code, text, and images are owned by Bill Menees.

No Warranties
SharpScript is provided AS IS without warranty of any kind, either expressed or implied. The entire risk as to the quality and performance of the product is with you. Should the product prove defective, you assume the cost of all-necessary servicing, repair, or correction. To the maximum extent permitted by applicable law, Bill Menees disclaims all warranties and conditions, either express or implied, including, but not limited to, implied warranties of merchantability, fitness for a particular purpose, title, and non-infringement, with regard to SharpScript, and the provision of or failure to provide Support Services.

Limitation Of Liability
To the maximum extent permitted by applicable law, in no event shall Bill Menees be liable for any special, incidental, indirect, or consequential damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, data being rendered inaccurate, loss sustained by you or third parties, a failure of the program to operate with any other programs, or any other pecuniary loss) arising out of the use of or inability to use SharpScript or the provision of or failure to provide Support Services, even if Bill Menees has been advised of the possibility of such damages. In any case, Bill Menees' entire liability under any provision of this license agreement shall be limited to U.S.$5.00. Because some states and jurisdictions do not allow the exclusion or limitation of liability, the above limitation may not apply to you.

